文章编号:1000-324X(2023)07-0807-08

稳定立方相结构的 n 型无铅 AgBiSe2 基热电材料

王姝灵¹,蒋蒙¹,王连军¹,江莞^{1,2}

(东华大学 1. 材料科学与工程学院, 纤维材料改性国家重点实验室; 2. 功能材料研究中心, 上海 201620)

摘 要: n型 AgBiSe₂基化合物的晶格热导率低,是一种很有潜力的高性能热电材料。然而,本征 AgBiSe₂化合物在 300~700 K 之间存在两次相变,使其应用受限。因此,获得具有稳定结构的 AgBiSe₂基化合物,并优化热电性能至 关重要。本研究选择无铅的 IV-VI 族化合物 SnTe 与 AgBiSe₂进行合金化,制备了(AgBiSe₂)_{1,x}(SnTe)_x (x=0.10~0.30) 化合物。引入 SnTe 降低了 AgBiSe₂立方相的相变温度,还有效抑制其发生可逆相变,得到了稳定的立方相 (AgBiSe₂)_{0.75}(SnTe)_{0.25}材料。SnTe 引起晶格中原子高度无序分布,导致室温下晶格热导率从 0.76 W·m⁻¹·K⁻¹(x=0.10) 降低到 0.51 W·m⁻¹·K⁻¹(x=0.30)。进一步 Ag 位掺杂 Nb 元素,可以提升载流子浓度,增加该体系 ((Ag_{1-y}Nb_yBiSe₂)_{0.75}(SnTe)_{0.25} 化合物)的有效质量,大幅度提升电性能。室温下电导率由 77.7 S·cm⁻¹(基体)增大到 158.1 S·cm⁻¹ (y=0.02)。同时,材料中的杂质点缺陷也逐步增加,高温下缺陷散射进一步降低晶格热导率。在 700 K 时,晶格热导率 由 0.56 W·m⁻¹·K⁻¹(未掺杂)降低至 0.43 W·m⁻¹·K⁻¹ (y=0.04),最终获得了立方相结构稳定的 (Ag_{0.98}Nb_{0.02}BiSe₂)_{0.75}(SnTe)_{0.25} 材料,650 K 的 ZT 达到 0.32。上述研究结果表明,(AgBiSe₂)_{0.75}(SnTe)_{0.25} 化合物是一种具有低晶格热导率和稳定立方相结构的 n 型热电材料。本研究为高性能相变热电材料的晶体结构调控提出了新解决方案,有助于进一步推动其应用发展。

关键 词: AgBiSe2基化合物; 晶格热导率; 立方相; Nb 掺杂

中图分类号: TQ174 文献标志码: A

n-Type Pb-free AgBiSe₂ Based Thermoelectric Materials with Stable Cubic Phase Structure

WANG Shuling¹, JIANG Meng¹, WANG Lianjun¹, JIANG Wan^{1,2}

(1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620; 2. China Institute of Functional Materials, Donghua University, Shanghai 201620, China)

Abstract: n-Type AgBiSe₂-based compounds are considered as promising high-performance thermoelectric (TE) materials due to the low lattice thermal conductivity. However, their two phase transitions between 300 and 700 K limits their applications. Therefore, it is crucial to obtain AgBiSe₂-based compounds with stable structures and optimized TE properties. In this work, the Pb-free group IV-VI compound SnTe is selected for alloying with AgBiSe₂. Introduction of SnTe not only reduces the cubic phase transition temperature, but also effectively suppresses the reversible phase transition of AgBiSe₂. At room temperature, reduction of the lattice thermal conductivity from 0.76 to

基金项目:国家自然科学基金(51871053, 52174343)

收稿日期: 2022-12-14; 收到修改稿日期: 2023-01-31; 网络出版日期: 2023-03-10

National Natural Science Foundation of China (51871053, 52174343)

作者简介: 王姝灵(1999-), 女, 硕士研究生. E-mail: Wangshuling0120@163.com

WANG Shuling (1999–), female, Master candidate. E-mail: Wangshuling0120@163.com

通信作者:王连军,教授. E-mail: wanglj@dhu.edu.cn WANG Lianjun, professor. E-mail: wanglj@dhu.edu.cn

0.51 W·m⁻¹·K⁻¹ results from highly disordered distribution of atoms. Furthermore, Nb dopant to replace Ag, significantly improves carrier concentration of AgBiSe₂-based compounds, which promotes the effective mass and increases the electrical conductivity from 77.7 S·cm⁻¹ to 158.1 S·cm⁻¹ at room temperature. Meanwhile, the defect scattering at high temperature is enhanced with the increase of impurity point defects, leading to the lattice thermal conductivity reduced. At 700 K, the lattice thermal conductivity is reduced from 0.56 to 0.43 W·m⁻¹·K⁻¹, obtaining stable cubic phase compound (Ag_{0.98}Nb_{0.02}BiSe₂)_{0.75}(SnTe)_{0.25} with a ZT of 0.32 at 650 K. These results indicate that the (AgBiSe₂)_{0.75}(SnTe)_{0.25} compound is a promising n-type TE compound with low lattice thermal conductivity and a stable cubic structure. Such efforts provide a scheme for the crystal structure regulation of high-performance TE materials with phase transition and promotion of its application.

Key words: AgBiSe2-based compound; lattice thermal conductivity; cubic structure; Nb doping

随着人类社会对可再生能源的需求日益增加,寻找一种绿色环保的能量转换方式也愈发迫在眉睫。自从 Seebeck 效应^[1]、Peltier 效应^[2]和 Thomson 效应被发现以来,热电材料可以实现热能和电能的 直接相互转换,在应对能源危机问题上展现出极大的应用潜力,引起了广泛关注^[3]。热电转换效率取决

于材料的无量纲优值 ZT = $\frac{S^2 \sigma T}{\kappa_1 + \kappa_e + \kappa_{bip}}$, 其中

S、σ、T、 κ_{l} 、 κ_{e} 、 κ_{bip} 分别为 Seebeck 系数、电导率、绝对温度、晶格热导率、电子热导率和双极扩散热导率。理论上,性能优异的热电材料应具备"声子玻璃-电子晶体"的特性,因此,科研工作者们寻找到包括 Zintl 相^[4]、填充方钴矿^[5]、类液体材料^[6]等一系列满足"声子玻璃-电子晶体"特性的热电材料。I-V-VI₂族化合物(I=Cu, Ag; V=As, Sb, Bi; VI=S, Se, Te)由于其晶格中原子的无序化导致化学键的非简谐性增强,再加上 V 族元素的孤电子对在晶格振动畸变上的作用使其具有本征超低的晶格热导率^[7-8], 是一种潜在的具有"声子玻璃-电子晶体"特性的化合物。例如,由于相邻的硫离子与孤对电子之间的斥力引起的非谐性,CuSbS₂的晶格热导率在 627 K 仅为 0.5 W·m⁻¹·K^{-1[9]},在 AgSbSe₂和 AgSbTe₂中,无序的Ag和Sb原子会导致晶格热导率进一步下降^[10-13]。

AgBiSe₂ 化合物存在三种晶体结构,室温时为 六方相(空间群 P-3m1),随温度升高分别在 460 和 580 K 附近发生两次相转变,先转变为菱面体相(空 间群 R-3m),最终变为立方相(空间群 Fm-3m)。六方 相结构中两种占位不同的 Bi³⁺导致 Ag⁺空位较多, 电性能较差,室温下载流子浓度约为~10¹⁸ cm^{-3[14]}。 由于 AgBiSe₂在工作温度范围内需要经历两次结构 相变,使其晶格常数和力学性能在相变点处发生骤 变,应用在热电器件中会产生较高的内部热应力, 影响热电器件的稳定性及服役性能^[15-16],因此获得 稳定立方相结构的 AgBiSe₂,并优化热电性能至关 重要。已有报道^[17-20]通过在 Ag 的位置掺杂 Nb、In、 Ge 或者在 Se 位置掺杂卤素来提高载流子浓度。近 年,重庆大学周小元课题组^[21]和刘小村等^[22]发现 Sb、Sn 掺杂可以降低 AgBiSe₂的相变温度,使材料 在室温下可以保持稳定的立方相结构,Br 掺杂的立 方相结构的(AgBiSe₂)_{0.7}(PbSe)_{0.3} 化合物也展现出优 异的热电性能^[23-24]。

本研究首先选择无铅的 IV-VI 族化合物 SnTe 与 AgBiSe₂ 进行合金化,系统研究了引入 SnTe 对 AgBiSe₂ 物相结构和热电性能的影响,得到了宽温 度范围(300~700 K)内具有稳定立方相结构的 (AgBiSe₂)_{0.75}(SnTe)_{0.25} 热电材料。然后在其 Ag 位通 过掺杂 Nb 元素,调节载流子浓度,引入杂质点缺陷, 系统探究 Nb 掺杂对其热电性能的影响。

1 实验方法

1.1 样品制备

本研究使用真空熔融法结合放电等离子体烧结工 艺(Spark Plasma Sintering, SPS)制备组分为(AgBiSe₂)_{1-x} (SnTe)_x(x=0.10~0.30)和(Ag_{1-y}Nb_yBiSe₂)_{0.75}(SnTe)_{0.25}(y= 0.01~0.04)两组样品。在氩气手套箱中,将高纯金属 单质 Ag粒(99.999%,国药集团化学试剂有限公司)、 Bi 粒(99.999%,国药集团化学试剂有限公司)、Se 粒(99.99%,中诺新材科技有限公司)、Sn 粒 (99.999%,阿拉丁生化科技股份有限公司)、Te 块 (99.999%,阿拉丁生化科技股份有限公司)、Nb 粉 (99.999%,阿拉丁生化科技股份有限公司)、Nb 粉 (99.99%,阿法埃莎公司)按照化学计量比称取,放 入外径为13 mm的石英管中,真空密封,悬挂在立 式熔融炉中,在6h内升温至1373 K 保温10 h,随 后在3h内降温到923 K。退火48h后,样品随炉冷 却至室温。球磨熔融得到的铸锭(转速 300 r/min, 1 h), 球磨后过 80 μm(200 目)筛,得到的均匀粉体用 SPS 烧结得到 φ10 mm×2 mm的圆片,烧结条件为673 K, 80 MPa,保温 5 min。最后利用金刚石线切割机将样 品切割成测试所需的标准尺寸,用于性能测试和 表征。

1.2 材料表征

采用粉末 X射线衍射仪(Rigaku D/Max-2550 PC, 丹东浩元仪器有限公司, CuKa)和原位 X 射线衍射 仪(Empyrean, 荷兰帕纳科公司)表征材料的物相结 构。采用场发射扫描电子显微镜(TESCAN MAIA 3, 捷克共和国)和高分辨透射电子显微镜(JEOL JEM-F200, 日本, 加速电压 200 kV)观察样品的微 观形貌。采用电性能测试设备(ZEM-3, ULVAC-RIKO)同时测得样品的电导率和 Seebeck系 数。采用激光导热仪(LFA 457, Netzsch),测得样品 的热扩散系数 $D(m^2 \cdot s^{-1})$ 。根据公式 $\kappa = C_p D \rho$ 计算样 品的热导率,其中 C_p 是材料的比热容(J·kg⁻¹·K⁻¹), 利用 Dulong-Petit 定律计算得到; ρ 为材料的密度 (g·cm⁻³),利用阿基米德排水法测量。采用霍尔效应 测量系统(8400, Lake Shore)测量样品的室温霍尔系 数,计算样品的载流子浓度 n 和载流子迁移率 μ 。采 用差式扫描量热仪(DSC-214, Netzsch)表征样品在 300~750 K 范围内相变吸放热过程。

2 结果与讨论

2.1 (AgBiSe₂)_{1-x}(SnTe)_x的物相组成

图 1(a)是熔融合成、细化后(AgBiSe₂)_{1-x}(SnTe)_x 粉末的 X 射线衍射谱图, *x*=0.10 样品的主峰与六方 相结构的 AgBiSe₂ (PDF#74-0842, 空间群 P-3m1)一 一对应。随着 SnTe 含量增大,峰型逐渐发生变化, 从 2*θ*=44°附近的放大图中可以看出双峰逐渐合并, 峰的强度逐渐增加, *x*=0.25 样品的主峰与立方相结 构的 AgBiSe₂ (PDF 89-3673, Fm-3m)一一对应。衍射 峰向左发生轻微偏移,这是因为加入SnTe 使样品的 晶格常数线性增加,如图 1(b)所示。比较离子半径 可以初步确定离子半径较大的 Te²⁻(0.097 nm)占据了 离子半径较小的 Se²⁻(0.05 nm)位置,而 Sn²⁺(0.069 nm) 的离子半径远小于 Ag⁺(0.126 nm)、Bi³⁺(0.103 nm) 的离子半径。立方相结构 SnSe 可以解释离子半径减 小,晶格常数反而增加的现象^[25]。其中 Sn-Se 键合 距离约为 0.2995 nm,远大于 Ag/Bi-Se 键合距离

图 1 样品(AgBiSe₂)_{1-x}(SnTe)_x的物相组成

Fig. 1 Phase composition of $(AgBiSe_2)_{1-x}(SnTe)_x$ samples

(a) XRD patterns of $(AgBiSe_2)_{1,x}(SnTe)_x$ powder samples at room temperature and their amplification around 2θ =44°; (b) Lattice constant *a* varied with SnTe content *x* with the dotted line showing the best linear fitting; (c) Crystal structure of cubic $(AgBiSe_2)_{1,x}(SnTe)_x$; (d) Differential scanning calorimeter (DSC) heat flow curves from 300 K to 750 K

0.2916 nm^[26], 说明 Sn²⁺进入到 AgBiSe₂ 中, 导致晶 格常数呈现逐步增加的变化趋势。立方相 (AgBiSe₂)_{1-x}(SnTe)_x晶体结构如图 1(c)所示。图 1(d) 为样品 $(AgBiSe_2)_{1-x}(SnTe)_x$ 的差示扫描热流曲线。随 温度升高, x=0.10 样品在 333 K 附近有一个吸热峰, 523 K 附近出现较为尖锐的吸热峰, 分别对应六方 相转变为菱面体相和菱面体相转变为立方相。与 AgBiSe₂的相变温度点(580 K)相比较,引入 SnTe 使 立方相的相变温度点向低温移动。当x≥0.25时,相 转变对应的吸热峰消失,在400K的宽温度区间内, 样品出现极弱的热响应, 与结构相变引起的尖峰相 比,这种轻微的热响应只涉及边缘原子运动,而非 迅速的原子重排, 表现出较好的热动力学稳定性[24]。 以上结果说明引入 SnTe 不仅可以降低立方相的相 变温度,当其含量≥25%时还可以有效抑制 AgBiSe2发生相变。

2.2 (AgBiSe₂)_{1-x}(SnTe)_x的热电性能

图 2 为(AgBiSe₂)_{1-x}(SnTe)_x样品的热电性能参数 随温度的变化关系。如图 2(a),样品的室温电导率 随着 SnTe 含量增大而逐渐降低,由 184 S·cm⁻¹ (*x*=0.10)降低到 55 S·cm⁻¹(*x*=0.30)。这是由于随着 SnTe 引入,过多的空穴载流子中和了 AgBiSe₂化合 物的部分电子^[27],导致室温电导率降低。在 300~523 K温度范围内,随温度升高,*x*=0.1样品的 电导率先升高后降低,在 523 K存在明显的拐点, 对应图 1(d)的 DSC 热流曲线中的相变点;在 523~700 K温度范围内,随温度升高电导率先升高 后降低,表明相变后立方相 AgBiSe₂ 晶体仍表现出 半导体传导的特性,随后电导率出现微弱下降则主 要是由于本征激发等原因所导致。随着 SnTe 含量逐 渐增大,AgBiSe₂物相结构逐渐变成立方相结构,电 导率在整个测试温度区间呈现平缓升高的趋势,无 明显拐点。图 2(b)为(AgBiSe₂)_{1-x}(SnTe)_x样品的 Seebeck 系数随温度的变化关系,图中样品的 Seebeck 系数为负值,表明该材料为 n 型传导特性。 随着 SnTe 含量逐渐增大,室温 Seebeck 系数绝对值 逐渐增大,从105.5 μ V·K⁻¹增加到185.7 μ V·K⁻¹,表现 出与电导率完全相反的变化趋势。*x*=0.25 和 0.30 样品 的 Seebeck 系数绝对值都呈现先升高后降低的变化趋势,表现出非简并半导体的特征,当温度超过 400 K 时,Seebeck 系数绝对值分别从184 和 196 μ V·K⁻¹降 低到 121 和 94 μ V·K⁻¹,而这与载流子的本征激发 有关^[28]。

根据所测的电导率和 Seebeck 系数, 计算样品 的功率因子(Power Factor, PF, PF = $S^2\sigma$)随温度的 变化关系, 如图 2(c)所示。温度高于 523 K 时, 随着 SnTe 含量增大, 功率因子逐步降低。而在测试温度 范围内, *x*=0.25 样品的功率因子随温度升高呈现先 升高后降低的趋势, 这是由于 Seebeck 系数在高温 范围内的升高速率超过电导率的升高速率,导致功 率因子在 500 K 附近达到最大值 3.2 μ W·cm⁻¹·K⁻²。

图 2(d)为样品总热导率随温度的变化关系,室 温下总热导率随 SnTe含量增大逐渐降低,这是因为 引入 SnTe 使 AgBiSe₂的晶格逐渐转变为立方相结构, Ag 和 Bi 原子无序化程度增大,导致化学键非谐性 增强,加剧了声子-声子之间的散射^[29],进一步降

Fig. 2 Temperature dependent thermoelectric properties of $(AgBiSe_2)_{1-x}(SnTe)_x$ samples (a) Electrical conductivity; (b) Seebeck coefficient; (c) Power factor; (d) Total thermal conductivity; (e) Lattice thermal conductivity; (f) ZT 低晶格热导率。从图 2(e)晶格热导率随温度的变化 关系也可以看出,室温下晶格热导率面六方相的 $0.76 \text{ W·m}^{-1} \cdot \text{K}^{-1}$ 降低到立方相的 $0.51 \text{ W·m}^{-1} \cdot \text{K}^{-1}$ 。而 x=0.25 和 0.30样品分别在 500 和 400 K,热导率开 始明显增大。这主要是由于随着温度升高,样品热 传导不再是单一载流子传输,本征热激发对热导率 的贡献增大。图 2(f)是样品(AgBiSe₂)_{1-x}(SnTe)_x的 ZT 随温度的变化关系,随着 SnTe 含量增大,样品的 ZT 峰值逐渐降低。对于 x=0.25 和 0.30 样品,由于 在 500 K左右功率因子降低,因此相应温度的 ZT 达 到峰值~0.3 和~0.2 后开始下降。

综上所述, *x*≥25%时 (AgBiSe₂)_{1-x}(SnTe)_x 样品 为立方相结构。而 SnTe 含量增大会导致其热电性能 降低,因此选择性能较好的立方相结构 (AgBiSe₂)_{0.75}(SnTe)_{0.25}样品进行后续研究。

2.3 (AgBiSe₂)_{0.75}(SnTe)_{0.25}的物相结构分析

AgBiSe₂在室温下是六方相结构(空间群 P-3m1), 随着温度升高,分别在 460 和 580 K 附近出现两次 相变^[30]。图 3 中(AgBiSe₂)_{0.75}(SnTe)_{0.25} 的 XRD 谱图 在整个测试温度范围内都没有明显变化,并且也没 有相转变过程对应的峰型变化,图 4 为高分辨率透 射电镜(High Resolution Transmission Electron Microscope, HRTEM)照片以及对应的傅里叶变换(Fast Fourier Transform, FFT)得到的电子衍射图像,样品分别沿 [Ī11] 和[001]方向的晶体结构与立方相结构的 AgBiSe₂(空间群 Fm-3m)相匹配。综上,说明摩尔分 数 25%的 SnTe 可以使 AgBiSe₂在 300~700 K 的温度 范围内维持稳定的立方相结构(空间群 Fm-3m)。

2.4 Nb 掺杂的(Ag_{1-y}Nb_yBiSe₂)_{0.75}(SnTe)_{0.25} 化 合物

2.4.1 (Ag_{1-v}Nb_vBiSe₂)_{0.75}(SnTe)_{0.25}的物相组成

图 5(a)为室温下(Ag_{1-y}Nb_yBiSe₂)_{0.75}(SnTe)_{0.25} 样 品经过 SPS 烧结后块体的 XRD 图谱,所有样品的

Fig. 4 Series HRTEM images along (a) $[\overline{1}11]$ and (b) [001] zone axes for $(AgBiSe_2)_{0.75}(SnTe)_{0.25}$ and (c, d) corresponding FFT images

XRD 峰位都与立方相 AgBiSe₂(PDF#73-1741, Fm-3m)峰位一一对应。随着 Nb 掺杂含量逐渐增大, XRD 图谱上出现了明显的 Nb 单质的峰(2θ =38.5°, PDF 89-3715),说明在(Ag_{1-y}Nb_yBiSe₂)_{0.75}(SnTe)_{0.25} 化合物中 Nb 的固溶极限为 0.04 左右。由于 Nb²⁺的 离子半径(0.064 nm)远小于 Ag⁺的离子半径(0.126 nm), 随着 Nb 掺杂量增大,材料的晶格常数逐渐降低,如 图 5(b)所示,当达到固溶极限 y=0.04 时,其晶格常 数下降更加明显,主要是由于 Nb 析出以及 Ag⁺位置 空出所导致的。图 5(c)为 y=0.04 样品的面扫描元素 分布图,部分区域 Nb 元素明显富集,这也证明化合 物中存在 Nb 单质。

2.4.2 (Ag_{1-y}Nb_yBiSe₂)_{0.75}(SnTe)_{0.25}的热电性能

图 6(a)中, Nb 掺杂样品的电导率在 300~700 K 范 围内都高于未掺杂的样品,且电导率随着温度升高 而升高,仍然保持半导体的传输性质。随着 Nb 含量 增大,室温电导率逐渐增加到 y=0.02 样品的 158.1 S·cm⁻¹后开始下降,这主要是由于其载流子浓 度的变化所导致的。如表 1 所示,随 y=0~0.02 样品 的载流子浓度逐渐升高,对应的电导率也是逐渐升 高,说明 Nb²⁺替代 Ag⁺可以提供更多电子。y=0.04 样 品的载流子浓度下降,出现这种现象可能是由于 Nb 掺杂量超过了其固溶极限所导致的。图 6(b)中, y=0~0.03 样品的 Seebeck 系数绝对值逐渐降低,与电 导率变化趋势相反,这主要是由于二者与载流子浓 度相反的对应关系。图 6(c)为功率因子随温度的变化

图 5 样品(Ag_{1-y}Nb_yBiSe₂)_{0.75}(SnTe)_{0.25}的物相组成

Fig. 5 Phase compositions of $(Ag_{1-\nu}Nb_{\nu}BiSe_2)_{0.75}(SnTe)_{0.25}$ samples

(a) XRD patterns; (b) Lattice constant a changed with the content of Nb, y for sintered $(Ag_{1,y}Nb_yBiSe_2)_{0.75}(SnTe)_{0.25}$;

(c) Surface scan element distributions of *y*=0.04 sample

Fig. 6 Thermoelectric properties of (Ag_{1-y}Nb_yBiS e₂)_{0.75}(SnTe)_{0.25} samples
Temperature dependent (a) electrical conductivity, (b) Seebeck coefficient, (c) power factor, (e) total and lattice thermal conductivity, and (f) ZT;
(d) Absolute value of the Seebeck coefficient as a function of Hall carrier concentration at ambient conditions

关系,所有样品都随温度升高呈现先升高后降低的 变化趋势。而室温下功率因子随着 Nb 掺杂量增大呈 现逐渐降低的变化趋势(y=0.04 样品除外)。随着温度 升高,功率因子达到峰值 3.89 μW·cm⁻¹·K⁻²(y= 0.02)。

根据单抛带模型拟合载流子浓度与 Seebeck 系数绝 对值的关系曲线(图 6(d)),计算立方相结构的 $(Ag_{1-y}Nb_yBiSe_{2})_{0.75}(SnTe)_{0.25}$ 的有效质量为 $2.3m_0$,大 于 $BiSbSe_{3}(\sim 2.0m_0)^{[31]}$ 。y=0.04样品由于超过了固溶

8	1	3
~	•	-

	(2 x -1 -1			
Table 1 Carrier concentration <i>n</i> and mobility μ of sample (Ag., Nb, BiSe ₂), gr(SnTe), ar					
	浓度 n 和迁移 🛛	率 <i>μ</i>			
表 I (Ag _{1-y} N	$(\mathbf{b}_{y}\mathbf{B}\mathbf{i}\mathbf{S}\mathbf{e}_{2})_{0.75}(\mathbf{S}\mathbf{n}\mathbf{T}\mathbf{e}_{2})_{0.75}$	的0.25 杆品的氧流于			

Sample	<i>n</i> /cm ⁻³	$\mu/(cm^2 \cdot V^{-1} \cdot s^{-1})$
y=0	1.12×10^{20}	2.98
<i>y</i> =0.01	1.33×10^{20}	2.99
<i>y</i> =0.02	3.36×10^{20}	2.65
<i>y</i> =0.03	5.92×10^{20}	1.38
<i>y</i> =0.04	2.14×10^{20}	2.93

极限,导致载流子浓度降低,偏离了单抛带模型。而 由于室温电导率增大,样品的室温总热导率也随 y增大呈现增长趋势。并且 Nb 取代引起了质量和尺 寸不匹配,导致形成杂质缺陷^[18]。高温下,点缺陷 散射降低了晶格热导率,所有掺杂样品的晶格热导 率都低于未掺杂的样品晶格热导率,晶格热导率由 0.56 W·m⁻¹·K⁻¹(未掺杂)降低至 0.43 W·m⁻¹·K⁻¹(y= 0.04),如图 6(e)。由于高温范围的 Nb 掺杂降低了材 料的晶格热导率,因此y=0.02样品在温度超过 600 K 时 ZT 高于未掺杂的立方相(AgBiSe₂)_{0.75}(SnTe)_{0.25}, 在 650 K 时 ZT 达到峰值 0.32,如图 6(f)。

3 结论

本研究采用真空熔融结合放电等离子体烧结技 术分别制备了(AgBiSe2)1-x(SnTe)x(x=0.10~0.30)和 (Ag1-vNbvBiSe2)075(SnTe)025(v=0.01~0.04)材料, 系统 研究了 SnTe 与 AgBiSe2 进行合金化对其物相结构和 热电性能的影响,以及 Nb 掺杂对立方相结构 (AgBiSe2)0.75(SnTe)0.25 化合物热电性能的影响。研究 结果表明, SnTe与AgBiSe2进行合金化不仅可以降低 立方相相变温度还可以有效抑制可逆相变,当 SnTe 含量为 0.25 时, AgBiSe2在 300~700 K 的温度范围内 可以维持稳定的立方相结构,并且室温晶格热导率 从 0.76 W·m⁻¹·K⁻¹ 降低到 0.51 W·m⁻¹·K⁻¹。同时, Ag 位掺杂 Nb 元素, 在提高载流子浓度的基础上, 引入 了点缺陷,不仅进一步优化材料的电学性能,还使 得高温范围内的晶格热导率显著降低。700 K 条件下, 从0.56 W·m⁻¹·K⁻¹(未掺杂)降低至0.43 W·m⁻¹·K⁻¹(Nb 掺杂量为 0.04)。最终获得了立方相结构稳定的 (Ag0.98Nb0.02BiSe2)0.75(SnTe)0.25 材料, 其在 650 K 时 ZT达到 0.32。上述研究结果为解决高性能热电材料 的相变问题进行了有益的探索,有助于进一步推动 其应用进程。

参考文献:

- ZHOU W, YAMAMOTO K, MIURA A, et al. Seebeck-driven transverse thermoelectric generation. *Nature Materals*, 2021, 20(4): 463.
- [2] FREIRE L O, NAVARRETE L M, CORRALES B P, et al. Efficiency in thermoelectric generators based on Peltier cells. *Energy Reports*, 2021, 7: 355.
- [3] ZHANG K, ZHENG Q, WANG L, et al. Preparation and characterization of Ag₂Se-based ink used for inkjet printing. *Journal of Inorganic Materials*, 2022, 37(10): 1109.
- [4] MIN J I N, RONGBING L I, CHENGUANG F U, et al. Research progress on crystal growth and the thermoelectric properties of Zintl phase Mg₃X₂(X= Sb, Bi) based materials. *Journal of Inorganic Materials*, 2023, 38(3): 270.
- [5] SHI X, BAI S, XI L, et al. Realization of high thermoelectric performance in n-type partially filled skutterudites. *Journal of Materials Research*, 2011, 26(15): 1745.
- [6] BAI H, SU X, YANG D, et al. An instant change of elastic lattice strain during Cu₂Se phase transition: origin of abnormal thermoelectric properties. Advanced Functional Materials, 2021, 31(20): 2100431.
- [7] ZHANG X, ZHAO L D. Thermoelectric materials: energy conversion between heat and electricity. *Journal of Materiomics*, 2015, 1(2): 92.
- [8] HOANG K, MAHANTI S D. Atomic and electronic structures of I-V-VI₂ ternary chalcogenides. *Journal of Science: Advanced Materials and Devices*, 2016, 1(1): 51.
- [9] DU B, ZHANG R, CHEN K, et al. The impact of lone-pair electrons on the lattice thermal conductivity of the thermoelectric compound CuSbS₂. Journal of Materials Chemistry A, 2017, 5(7): 3249.
- [10] WANG H, LI J F, ZOU M, et al. Synthesis and transport property of AgSbTe₂ as a promising thermoelectric compound. Applied Physics Letters, 2008, 93(20): 202106.
- [11] ROYCHOWDHURY K, GHOSH T, ARORA R, et al. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe₂. Science, 2021, **371**: 722.
- [12] GUIN S N, CHATTERJEE A, BISWAS K. Enhanced thermoelectric performance in p-type AgSbSe₂ by Cd-doping. *RSC Advances*, 2014, 4(23): 11811.
- [13] CAI S, LIU Z, SUN J, et al. Enhancement of thermoelectric properties by Na doping in Te-free p-type AgSbSe₂. Dalton Transactions, 2015, 44(3): 1046.
- [14] BOCHER F, CULVER S P, PEILSTOCKER J, et al. Vacancy and anti-site disorder scattering in AgBiSe₂ thermoelectrics. *Dalton Transactions*, 2017, 46(12): 3906.
- [15] FAN S J, JIANG M, GU S J, et al. In-situ growth of carbon nanotubes on ZnO to enhance thermoelectric and mechanical properties. Journal of Advanced Ceramics, 2022, 11(12): 1932.
- [16] FU Y T, ZHANG Q, HU Z L, et al. Mg₃(Bi,Sb)₂-based thermoelectric modules for efficient and reliable waste-heat utilization up to 750 K. Energy & Environmental Science, 2022, 15(8): 3265.
- [17] PAN L, BERARDAN D, DRAGOE N. High thermoelectric properties of n-type AgBiSe₂. *Journal of The American Chemical Society*, 2013, 135(13): 4914.
- [18] LIU X, JIN D, LIANG X. Enhanced thermoelectric performance of n-type transformable AgBiSe₂ polymorphs by indium doping. *Applied Physics Letters*, 2016, **109(13)**: 133901.
- [19] WU H J, WEI P C, CHENG H Y, et al. Ultralow thermal conductivity in n-type Ge-doped AgBiSe₂ thermoelectric materials. *Acta Materialia*, 2017, **141**: 217.
- [20] GUIN S N, SRIHARI V, BISWAS K. Promising thermoelectric

performance in n-type AgBiSe₂: effect of aliovalent anion doping. *Journal of Materials Chemistry A*, 2015, **3(2):** 648.

- [21] ZHAO T, ZHU H, ZHANG B, et al. High thermoelectric performance of tellurium-free n-type AgBi_{1-x}Sb Se₂ with stable cubic structure enabled by entropy engineering. Acta Materialia, 2021, 220: 117291.
- [22] LIU X C, PAN M Y. Structural phase transition and related thermoelectric properties in Sn doped AgBiSe₂. Crystals, 2021, 11(9): 1016.
- [23] WANG T, CHENG C, LIU Y, et al. Inhibition of lattice thermal conductivity of ZrNiSn-based half-Heusler thermoelectric materials by entropy adjustment. *Journal of Inorganic Materials*, 2022, 37(7): 717.
- [24] ZHU H, ZHAO T, ZHANG B, et al. Entropy engineered cubic n-type AgBiSe₂ alloy with high thermoelectric performance in fully extended operating temperature range. Advanced Energy Materials, 2020, 11(5): 2003304.
- [25] SHANNON R D. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. *Acta Crystallographica*, 1976, **32:** 751.
- [26] MARIANO A N, CHOPRA K L. Polymorphism in some IV-VI

compounds induced by high pressure and thin-film epitaxial growth. *Applied Physics Letters*, 1967, **10(10):** 282.

- [27] ZHANG Q, GUO Z, TAN X, et al. Effects of AgBiSe₂ on thermoelectric properties of SnTe. *Chemical Engineering Journal*, 2020, **390:** 124585.
- [28] TANG X, SU X, TAO Q, et al. Effect of Te and In co-doping on thermoelectric properties of Cu₂SnSe₃ compounds. Journal of Inorganic Materials, 2022, 37(10): 1079.
- [29] XIA Q, YING P, HAN Z, et al. Chemical composition engineering leading to the significant improvement in the thermoelectric performance of AgBiSe₂-based n-type solid solutions. ACS Applied Energy Materials, 2021, 4(3): 2899.
- [30] HU Y, YUAN S, HUO H, *et al.* Stabilized cubic phase BiAgSe_{2-x}S_x with excellent thermoelectric properties *via* phase boundary engineering. *Journal of Materials Chemistry C*, 2021, **9**(21): 6766.
- [31] WU H, LU X, WANG G, *et al.* Strong lattice anharmonicity securing intrinsically low lattice thermal conductivity and high performance thermoelectric SnSb₂Te₄ via Se alloying. Nano Energy, 2020, **76**: 10508.